MSV 27: Answers

A and B are independent events if and only if $P(A \mid B)=P(A)$.
So from the diagram, A and B are independent events if and only if

$$
\frac{b}{b+c}=a+b=\frac{a+b}{a+b+c+d} .
$$

This is true (multiplying out) if and only if $\mathbf{a c}=\mathbf{b d}$.
We can now note that $\mathbf{0 . 4 5} \times \mathbf{0 . 1}=\mathbf{0 . 3} \times \mathbf{0 . 1 5}$.
So we can assign the four numbers to $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d in eight different ways that make sense.

\mathbf{a}	\mathbf{c}	\mathbf{b}	\mathbf{d}
0.45	0.1	0.3	0.15
0.45	0.1	0.15	0.3
0.1	0.45	0.3	0.15
0.1	0.45	0.15	0.3
0.3	0.15	0.45	0.1
0.3	0.15	0.1	0.45
0.15	0.3	0.45	0.1
0.15	0.3	0.1	0.45

There are 24 ways to allocate the four numbers altogether,
So $\mathrm{P}(\mathrm{A}$ and B are independent) is $\mathbf{1 / 3}$.

We could look at this problem this way:
If A and B are independent, then so are A^{\prime} and B, and A and B^{\prime}, and A^{\prime} and B^{\prime}.
The Venn diagram for each of these eight pairs of events is below.

www.making-statistics-vital.co.uk

