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Abstract: when are the coefficients of a polynomial equation
equal to its roots?

The other day I ran into this question: if the roots of the quadratic equa-
tion x2 + ax + b = 0 are a and b, what are the possible values for a and b?

The question is straightforwardly solved. We say x2+ax+b = (x−a)(x−
b) = x2 − (a + b)x + ab. This is true for all values of x, so we can equate the
coefficients of each side, giving −a− b = a, and ab = b. Thus on solving, the
possibilities for (a, b) are (0, 0) or (1,−2).

So far, so good, but the question to my mind immediately invited gener-
alisation. If we’re given the equation xn+an−1x

n−1+an−2x
n−2+ · · ·+a0 = 0,

then what possibilities for (an−1, an−2, · · · , a0) are there if these values are
also the roots of the equation?

We can note firstly that (0, 0, · · · , 0) will always be a solution (we’ll call
this the trivial solution).

Secondly, if (an−1, an−2, · · · , a0) is a solution for the degree-n equation,
then by multiplying our degree-n equation by x, we see (an−1, an−2, · · · , a0, 0)
will be a solution in the degree-(n+ 1) case. Thus if we add zeroes as we go,
the number of solutions we find will be non-decreasing as n increases.

What happens with the degree-3 case, the cubic equation? We have
x3 + ax2 + bx + c = (x− a)(x− b)(x− c), and on expanding and comparing
coefficients, we find

[2a + b + c, ab + ac + bc− b, c(ab + 1)] = [0, 0, 0].

Let me explain the notation here. The algebra rapidly becomes unfriendly
with this problem, and the use of a computer algebra package becomes es-
sential. I’m using Derive 6, but there are many alternatives – if you don’t
currently use such a program, it will open up a wealth of maths investigations
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to you if you do. When it comes to algebra, Derive is infinitely quicker and
more accurate than I can ever hope to be.

Here [x, y, z] denotes a three-dimensional vector, a format which makes
the substitution of values within Derive easy. We effectively have three equa-
tions in three unknowns. Solving 2a + b + c = 0 gives c = −2a − b, and
substituting in, we have [0,−2a2 − 2ab− b2 − b,−(2a+ b)(ab+ 1)] = [0, 0, 0].

Now putting (2a + b)(ab + 1) = 0, we have b = −2a or b = −1

a
.

Taking the first of these options gives [0, 2a(1 − a), 0] = [0, 0, 0], and so
a = 0 or 1. These give us the trivial solution (0, 0, 0), and (1,−2, 0). Tak-

ing b = −1

a
instead gives

[
0,−2a2 +

1

a
− 1

a2
+ 2, 0

]
, and solving for a here

gives four solutions, two complex (we’ll ignore these), a = 1 and (curiously)
a = 0.5651977173.... Substituting back, we get the triplets for (a, b, c) of
(1,−1,−1) and (0.5651977173...,−1.769292354..., 0.6388969193...).

So we have four real solutions to our degree-3 problem. It’s pleasing to
ask a graphing program to plot this last possibility.

Can we make a conjecture now? Doing this on the basis of n = 2 and 3
alone seems rash. But it does seem appropriate to ask, will there always be
one solution to the degree-n equation where all the coefficients are non-zero?
(We have two such solutions here.) And what happens to these coefficients
as n gets larger - will they perhaps form a sequence that tends to a limit?

On to the quartic. We have (with the added zeroes) four solutions already
- is there a new one to be found, where none of the coefficients are zero? We
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have
x4 + ax3 + bx2 + cx + d = (x− a)(x− b)(x− c)(x− d).

Derive tells us from this that

[2a + b + c + d, (a(b + c + d) + b(c + d− 1) + cd),

(a(b(c + d) + cd) + c(bd + 1)), d(abc− 1)] = [0, 0, 0, 0].

We have d = −2a− b− c, and so

[0,−2a2−a(2b+2c)−b2−b(c+1)−c2,−2a2(b+c)−a(b2+3bc+c2)−c(b2+bc−1),

(2a + b + c)(1 − abc)] = [0, 0, 0, 0].

From the final element, we see that c = −2a − b, or c =
1

ab
. Substitut-

ing in c = −2a − b leads to solutions we have already with d = 0 added,
that’s (0,0,0,0), (1,-2,0,0), (1,-1,-1,0), and (0.5651977173... , -1.769292354...,

0.6388969193..., 0). But c =
1

ab
is more interesting. This yields[

0,−f(a, b)

a2b2
,−g(a, b)

a2b2
, 0

]
where f is a degree-6 polynomial, and g is degree-7. Derive is certainly
earning its keep, but asking it to solve f(a, b) = 0 or g(a, b) = 0 for a or b,
however, sees it down tools. We will need a different strategy. How about
plotting the curves f(a, b) = 0 and g(a, b) = 0? Their intersection points will
then give us what we need. This leads to (using Autograph) a closed curve
for f(a, b) = 0, and a more widely-spread curve for g(a, b) = 0.
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The uppermost of the intersection points is (1,−1), which leads to the so-
lution (1,−1,−1, 0), which we have already. But the lower point at (1,−1.7548777)
gives us a fresh solution, that is, (1,−1.7548777...,−0.56984028..., 0.32471798...).

So our conjecture has proved true for n = 4 at least, although this time
we have only a single solution for (an−1, an−2, · · · , a0) that is completely non-
zero. Now on to the quintic, which initially solves much as before. We have
e = −2a − b − c − d, and on substituting, we have d = −2a − b − c, which

leads on to solutions we already have, or d = − 1

abc
, which gives us three

polynomials in a, b and c that must equate to zero. The hope is that we can
now move into three dimensions, and plot three (fiendish-looking) surfaces;
the points where they intersect should give us more possible values for a, b
and c. The power of Autograph is evident here – it plots the first two surfaces
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without a murmur. But try to plot the third, and – nothing. It’s as if we’re
asking for a plot for (x2 + y2 + z2 + 1)(x2y2z2 + 1) = 0 – there are simply no
real points that work.

And so my conjecture fails, and not for the first time, the quintic proves
to be a stumbling block. We are, in the degree-5 case it seems, asking for
too much. Our new revised conjecture must be that for degrees higher than
four, we can never find a solution for (an−1, an−2, · · · , a0) where all the ai
are non-zero. Maybe someone out there is au fait with a package even more
powerful than Derive - I would be delighted to hear of a counter-example if so.
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